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Abstract
The classical logarithmic potential of a charged dislocation which is widely used
in the analysis of electrical and optical properties, determination of dislocation-
associated levels, etc, can be significantly modified due to, among other effects,
the deformation potential of the strain field as well as to the graininess of the
screening charge cloud as long as it consists of shallow impurities.

In general, this reduces the effective potential barrier to carrier recombi-
nation, the activation energy for thermal emission of trapped non-equilibrium
carriers from core states, and also the optical excitation energies for transitions
from the core into free band states.

These effects are discussed in some detail and general rules concerning
their relative importance are established.

1. Line charges and screening clouds

Dislocations in semiconductors are usually modelled as charged lines that are surrounded by
a cylinder of screening charges which compensate the line charge with the result that the sum
of all charges is zero.

In the early work on this topic (Read 1954) the dislocation core was described as a row of
acceptor-like dangling bond (DB) states which are localized at a distance b from each other.
For 60◦ dislocations which are often the predominant type after plastic deformation as well as
in mismatch networks of epitaxial layers, b happens to be equal to the length of the Burgers
vector. If a fraction f of the DBs are occupied, the line charge per unit length of dislocation
is q = e f/b.

Later on, after the presentation of convincing evidence from carrier density measurements
on Ge (Schröter 1967, Schröter and Labusch 1969, Labusch and Schröter 1978), it was
concluded that the core states in this material are actually one-dimensional bands, i.e. they are
non-localized, the charge density is homogeneous along the dislocation, and the line charge
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is smeared out over a cylinder of radius ri which is given by the extent of the wavefunction
perpendicular to the line direction. ri is of the order of b. This view has been confirmed by
direct measurements of one-dimensionalconduction along dislocation lines (Hess and Labusch
1993).

On the other hand, the core states in Si seem to be localized at points on the line which can
be either intrinsic defects (for instance jogs) or impurities (single atoms or small precipitates)
that have been scavenged by the dislocation or segregated in or near the core (Kronewitz 1991,
Kveder et al 2001, Schröter and Cerva 2002). For the sake of convenience we continue to use
the description of the line charge in terms of f and b although only q = e f/b has a direct
physical meaning. The true occupation of core states is then f ∗(b/c) where c is the actual
distance between point defects at the core.

The screening cloud was described in the early work as a cylinder of charged shallow
impurities (Read 1954). The charge density inside this cylinder is

ρ = eNsh for r < r0

and zero outside r0. The screening radius r0 is given by the neutrality condition:

πr2
0 Nsh = f/b.

We call this CI screening.
As an alternative, the screening can be described as a partial expulsion of free carriers

from the vicinity of the dislocation (Schröter 1967, Schröter and Labusch 1969, Labusch and
Schröter 1978). We call this FC screening. The charge density in this case is continuous:

ρ ∝ exp(−r/λ); λ =
√

εε0kT

e2nfree
.

In most experiments, the free carrier density is approximately equal to the density of shallow
impurities Nsh. Actually both types of screening are always present, but usually CI screening
predominates at high occupation and/or low temperatures.

The transition from CI to FC screening can be estimated in two ways:

(i) From the condition Ucore = kT where Ucore is the electrostatic potential of the charged
line and the screening cloud at the core. From this, anticipating an expression for the
potential (see below), we obtain by elementary algebra ftr = kT/[Wcoul ln(r0/ri )] for the
occupation at the transition.

Wcoul = e2

2πεε0b

is a characteristic electrostatic energy of the problem which will be used throughout this
paper. Its values are 0.68 and 0.45 eV for Si and Ge, respectively. ln(r0/ri) typically takes
on values between 2 and 7.

(ii) From the condition that the screening radius is greater or less than the screening length
λ. With the expressions for r0 and λ given above, we obtain ftr = kT/2Wcoul. This
is somewhat higher than the value according to (i). For f between these two values,
we have CI screening close to the dislocation and FC screening at larger distances, and
with increasing f an increasing fraction of the screening charge is contained in the
CI regime. Typical values of ftr according to (ii) are in the range from 0.5 to 1.5%.
In most experiments, except near neutrality, i.e. f = 0, CI screening is predominant.
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2. Calculation of the electrostatic potential

Assuming CI screening and localized line charges, the electrostatic potential is given by

Uelst = Wcoul
1

2

(∑
�

1

|�x − �x�|−
∑

s

1

|�x − �xs |
)

where �x� and �xs refer to the positions of charged defects in the dislocation core and in the
screening cloud, respectively. Normalizing all lengths by b/ f we obtain

Uelst = Wcoul f G(�r, R)

where �r is now the normalized vector of the point at which the potential is calculated and

R = r0 f/b =
√

f 3

π Nshb3

is the normalized screening radius. The range of R is typically from 20 to 200. In the
temperature range of interest, FC screening takes over if f becomes small enough and/or Nsh

big enough to render R smaller than 20.
G(�r , R) can be considered as a normalized potential and depends only of the type of

screening and the arrangement of the charges in the dislocation core. The following calculations
are mainly concerned with this function.

For the sake of simplicity we shall assume equidistant charges in the dislocation core but
keep in mind that, at elevated temperatures, fluctuations of the distances are expected. The
corresponding contribution to the electrostatic potential is of the order of kT (Read 1954,
Broudy and McClure 1960). As a consequence of the normalization, the distance between
charges on the line as well as the volume density of charged impurities are unity in the
calculations that follow.

A simple approximate solution for the electrostatic potential is obtained if both the line
charge and the screening are assumed to be homogeneous and if the distance to the core is
greater than unity in normalized units:

G = ln(R/r) − 1

2

[
1 −

(
r

R

)2]
(Read 1954). (1)

In a numerical calculation for discrete line charges we notice that there is a significant difference
between

(i) the potential of an electron approaching a site between two charged points on the line,
which is the position of lowest energy (the ‘between sites’ position), and

(ii) that of an electron which is taken away from an occupied site, mainly because the distance
to the nearest-neighbour charges in the ‘on-site’ position is twice as large as that in the
‘between’ position.

Figure 1 shows the calculated normalized potentials for R = 25 and 150 for both positions,
together with the potential according to equation (1). We notice that the difference of the
curves for different R is practically constant as predicted by equation (1), but that the curves
for discrete line charges are significantly different from each other and from equation (1).
The relative difference is of course inversely proportional to the absolute value and therefore
maximal for small R. The difference between the ‘on-site’ and the ‘between sites’ positions
extends to large radii. This is understandable because an electron that is taken away from the
line leaves behind an empty site. Whether this has physical consequences will be discussed
later on.
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Figure 1. The electrostatic potential of a dislocation line for two values of the normalized screening
radius. Here, as in the other figures, the potential is normalized by Wcoul f . The upper group of
three curves was calculated for R = 150, the lower group for R = 25. In each group the uppermost
curve represents the simplified potential given by equation (1), the middle curve corresponds to the
‘between’ position, and the lowest curve corresponds to the ‘on-site’ position.

Figure 2. The distribution of electrostatic potential values in the dislocation core, assuming a
constant line charge. The smooth curve is a Gaussian distribution with the same half-width. The
screening radius in this example is R = 20. The half-width varies approximately proportionally
to the inverse square root of R. Fluctuations of the actual potential are reduced by readjustment of
the line charge.

3. Fluctuations

If the line charge per unit length in the core is constant,screening by a statistical array of charged
shallow impurities leads to fluctuations of the potential. This was simulated in a numerical
calculation. Figure 2 shows the distribution of potential values near the core obtained from 4000
different random distributions, together with a Gaussian of the same variance. The screening
radius in this calculation was R = 20 (in normalized units). The width of the distribution
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Figure 3. The correlation between the electrostatic potential fluctuations at the normalized distance
r/R from the core and in the core (see figure 2) for R = 25(×) and R = 150(+).

function decreases roughly with the inverse square root of R. At first sight, the simulation
seems to indicate that, at the lower end of the range of R, fluctuations can be significant.
However, we have to take into account that the occupation of the core states depends on the
local value of the potential and the potential in turn depends on occupation f :

δUcore = Wcoul f �G(0, R) + Wcoul f

(
1

f
+

∂G

∂ f

)
δ f. (2)

Only the first term on the right-hand side of this equation is calculated in the simulation for
constant f .

If the core states are acceptors with a single level, the change of f with Ucore is given by
δ f
f ≈ − δUcore

kT . Combining this with equation (2) we obtain

δUcore = Wcoul f �G(0, R)
1

1 + Wcoul f
(
G + f ∂G

∂ f

)
/kT

,

so δUcore is smaller than kT �G/G and therefore may be safely neglected. This negative
feedback of the occupation on variations of the core potential has also been noticed by other
authors (Kveder et al 2001) in a different context. We conclude that, because of their long
range, significant fluctuations are expected only in the occupation of the core states and not in
the potential around the dislocation.

In the next section we show that the barrier to transitions to and from the dislocation core
states does not coincide with the core position but is situated up to a few normalized units
away from it. To check that the negative feedback is nevertheless valid, we have evaluated by
simulation the correlation between the potential values at distance r from the core and at the
core. The result is shown in figure 3 as a plot of

correlation = 〈(U(0, R) − 〈U(0, R)〉)(U(r, R) − 〈U(r, R)〉)〉√〈(U(0, R) − 〈U(0, R)〉)2〉√〈(U(r, R) − 〈U(r, R)〉)2〉
versus r/R for R = 25 and 100. The figure shows that the correlation is very close to unity
(more than 90%) for distances up to 2R, so within the range of expected barrier positions the
fluctuations contribute no more to the barrier height than to the core potential and may be
neglected as well.
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Figure 4. Numerical calculation of the normalized sum of electrostatic and deformation potentials
in the ‘on-site’ position as a function of the normalized radius r at a 60◦ dislocation. Both partials
are taken into account in the deformation potential. r is taken in the direction of the saddle point.
The normalized screening radius is R = 30. The set of curves represents values of the deformation
potential strength D∗ from 0.1 to 2.0; a group of curves for the normalized electrostatic potential,
as in figure 1, are given for reference.

4. Activation barriers

In the early work on dislocations, the barrier to transitions from the conduction band into
dislocation core states was assumed to be given by the height of the core potential. Later on,
it was suggested that the effective barrier height is significantly reduced by tunnelling through
the top of the potential near the core (Schröter 1967). This effect is particularly strong if the
wavefunction of the core is non-local along the line but well localized in the perpendicular
direction, which seems to be true for Ge. In this case the uppermost curves in figure 1 which
have very pointed tips are valid, and the inner cut-off radius to be inserted in equation (1) is
of the order of f in normalized units (b in normal units). On the other hand, tunnelling is
expected to be less effective for localized charges in the core because the top of the potential
curve is flat.

More recently, it has been suggested that the deformation potential of the dislocation
strain field can reduce the barrier significantly versus the pure electrostatic potential (Hess
1994, Labusch 1997).

The deformation potential is given by the deformation potential tensor as

Udef =
∑

i j

	i jεi j .

Predominant in the sum are the terms connected with a change of the nearest-neighbour distance
and, consequently, with the strength of the covalent bonds. The corresponding components of
	 are negative. Udef is therefore essentially proportional to the edge component of the Burgers
vector and changes sign across the glide plane of the dislocation.

In the coordinate system which is sketched in figure 4, the deformation potential of a pure
edge dislocation is then to a fair approximation

Udef = −b90◦ D

2πr
cos(φ) where D ≈ −	yy > 0.
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A more comprehensive treatment, using isotropic elasticity theory, of the potential at a
particular dislocation (the partial surrounding a Ni precipitate in Si) has been worked out
by Hedemann and Schröter (1997).

Unfortunately the components of the deformation potential are difficult to measure and
their values not well known. The best values available at present are D = 10 eV for Ge and
D = 6 eV for Si (Landolt–Börnstein 1982). These may be subject to revision if better data
become available and also if corrections due to elastic anisotropy are taken into account. In
the present situation, we shall carry out calculations with D as a parameter.

Our workhorse, the 60◦ dislocation, is dissociated into a 90◦ partial for which the
Burgers vector has the length b90◦ = b/

√
3 and a 30◦ partial whose edge component is

b30◦ edge = 1
2 b/

√
3.

The deformation potential gives rise to bound states (one-dimensional bands) that split
off from the band edges of the bulk into the gap (Winter 1977, 1978, Alexander and Teichler
2000). From calculations, the binding energies of these states turn out to be rather small, not
much bigger than those of shallow impurities. But one should expect the binding energy to be
somewhat modified by the presence of the dislocation core which cannot be described in terms
of a deformation potential. Evidence for the existence of a rather shallow one-dimensional
band in Si has been obtained from AC conductivity measurements after saturating the core
states with atomic hydrogen (Kveder et al 1985), from microwave conductivity measurements
(Brohl et al 1990), and also from the photoluminescence at dislocations (Kveder et al 1995,
2001).

We also expect some contribution of the deformation potential to the energy of the core
states.

For core states and shallow bands it is important to notice that by definition the dislocation
levels are always related to the unperturbed band edges of the bulk and that their position is not
affected by the deformation potential, whereas the electrostatic potential shifts the core levels
and the shift is practically equal to the potential value.

In a simplified preliminary analysis, only the deformation potential of the 90◦ partial was
taken into account and equation (1) was used for the electrostatic potential (Labusch 1997).
The total potential is then

U = Wcoul f

{
ln(R/r) − 1

2

(
1 −

(
r

R

)2)
− D∗

r
cos(φ)

}
.

In this expression we have introduced our normalized length unit b/ f and extracted the factor
Wcoul f . The strength of the deformation potential is represented by

D∗ = b90◦ D

bWcoul
.

With the above-mentioned D-values, the values of D∗ are 2 and 0.8 for Ge and Si, respectively.
U has a saddle point in the direction φ = 0 at rsaddle = D∗ and the value of U at the saddle
point is reduced relative to the core value at the inner cut-off radius ri by

Ucore − Usaddle = Wcoul f {ln(D∗/ri ) + 1}.
For Ge, because of its large D∗ and small ri (ri ≈ f in normalized units), this is always a large
fraction of Ucore, but even for Si it is not negligible at the lower end of the range of R.

In a more elaborate numerical evaluation, we take into account the contribution of the 30◦
partial which is not really negligible compared with that of the 90◦ partial.

Furthermore, we do the calculation for discrete core charges and for the two positions
(‘on’ and ‘between’ sites) that were mentioned before.
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Figure 5. The normalized sum of the electrostatic and deformation potentials in the ‘between sites’
position. Otherwise the same as figure 4.

Unfortunately, since the results depend on the separation of the partials, we need another
parameter besides R and D∗ in the calculation. In our example, which is presented in figures 4
and 5, we have assumed a stacking fault width of 5 nm and Nsh = 5 × 1014. The screening
radius is R = 30. Each set of curves represent D∗-values between 0 (uppermost curve) and 2
(lowest curve) for the ‘between’ (figure 4) and ‘on-site’ positions (figure 5). The electrostatic
potentials shown in figure 1 are repeated for reference. The results for different values of the
screening radius have practically the same appearance and are merely shifted against those of
figures 4 and 5 by a nearly constant value ≈ ln(R/30) as may be expected from the simplified
form of the potential. The results show that, certainly for Ge but even for Si, the activation
barrier can be significantly lower than the potential in the core.

In principle, the barrier can be further reduced if a charged impurity happens to be in a
position close to the saddle point but far enough from the core that the negative feedback via the
local occupation of core states is not or only partially effective. From our correlation analysis
it follows that this must be a rare exception. Qualitatively, one would expect the probability
of obtaining this situation for one of the ‘on-site’ or ‘between’ positions to be roughly 1/R2.
This is always so small that no significant reduction of the barrier due to a charged impurity
is expected on any relevant dislocation segment (length: a few microns). This was in fact
confirmed directly by a simulation of 10 000 sites with different random arrays of screening
charges. Only at three of these was the barrier reduced by more than 10%, due to the presence
of a screening charge close to the saddle point.

Inspecting the results in figures 5 and 6, we have to keep in mind that both the starting
position of a transition from the core to a free bulk state and the final relaxed end position of
a transition from a free state to the core are ‘on site’ at r = 0. In the latter case, the charges in
the core have to go through a relaxation process in which the ‘between sites’ position becomes
‘on site’. A relaxation of the total energy of the system is also possible for the reverse process,
because the removed electron leaves behind a gap in the line charges that will eventually
collapse and turn into an equidistant distribution for which the potential of the free electron is
now ‘between sites’.

It has been suggested that, as a rule, because the transition is very slow, the hopping rate
of charges along the line is faster than the transition rate to and from the core (Figielski 1990).
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Figure 6. A schematic drawing of the levels, the electrostatic potential, and the barrier at
dislocations.

This seems to suggest that the relaxation of charges in the core takes place during the transition.
If this is accepted, the effective potential, both ways, should be an interpolation between ‘on
site’ and ‘between sites’. However, although this approach appears quite plausible in a particle
picture, the following line of arguments which is based on wave mechanics casts considerable
doubt on its validity. Consider for instance the transition of a free electron to a core state.
The transition is slow because free states at the energy of the saddle point are rarely occupied;
but once an electron has collected enough energy, the quantum mechanical transition is fast.
Furthermore, before the transition has taken place, there is no driving force for the subsequent
relaxation process which is expected to happen only after the extra electron in the core has
been localized in the middle between to other charges. A similar reasoning can be applied to
the reverse process: the relaxation by which the gap in the charge distribution is filled and an
equidistant minimum energy distribution re-established can take place only after the transition.

We therefore leave the different potentials as they are given in the figures, but have to admit
that a true many-body treatment of the transition process which includes also fluctuations of
the charge positions in the dislocation core would be desirable. We notice that for small D∗ the
barrier for a transition into the dislocation core can be higher than the potential of an electron
in the ‘on-site’ position to which it relaxes after the transition.

5. Thermal activation analysis

Frequently, the analysis of experiments is done by means of an Arrhenius plot and determination
of an activation energy Q from its slope. With reference to figure 6, the rate of transition across
the saddle point in n-type material is proportional to exp

(−UB+(EC−µ)

kT

)
, where UB is the potential

at the saddle point, EC the edge of the conduction band, and µ the Fermi level. Generally the
activation energy in the exponent is not independent of T . If the dependence is assumed to be
linear, it is cancelled by the denominator, so Q is the extrapolated value at T = 0:

Q = lim
T →0

[UB + (EC − µ)].

If we furthermore assume UB = Ucore, a constant carrier density in the experimental
temperature range, and an acceptor-like core level, the final result is Q = ED. This follows
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Figure 7. Thermal activation analysis of rates of transition to and from dislocation states. The
uppermost curve shows [Ucore + (EC − µ)] as a function of temperature T in the ‘on-site’ position.
It is equal to the activation barrier for D∗ = 0. The other curves represent the barrier in the ‘on-site’
position (dotted lines) and the ‘between sites’ position (dashed lines) for values of the deformation
potential strength D∗ = 0.5, 1.0, and 1.5. The measured activation energy Q (the slope of an
Arrhenius plot) is obtained by linear extrapolation from the experimental range of T to T = 0.

because at T = 0, the Fermi level is pinned to the dislocation level which remains at ED below
the local level of the conduction band edge.

If, on the other hand, UB < Ucore while the other assumptions remain valid, we obtain

Q = lim
T →0

[ED − (UC − UB)]

No general formula is available for the quantitative dependence of (UC − UB) on T which
comes about through the dependence on f (T ). It has to be evaluated separately for each
case under investigation by numerical calculation. Nevertheless, it can be useful to consider a
typical example which illustrates the expected features of the correct solutions and the quality
of simplifying assumptions such as the linearity in temperature. For this purpose, UB+(EC−µ)

and Ucore + (EC −µ) were calculated as functions of T under the assumptions Nsh = 5 × 1014

and ED = 0.6 eV.
The Fermi level was obtained from

n = Nsh = CT 3/2 exp[−(EC − µ)/kT ]

and inserted in

f = 1

1 + exp[(EC − µ + Ucore − ED)/kT ]

to obtain f (T, Ucore). The numerical Ucore( f ) was then inserted in this equation and it was
solved for f which was then inserted into Ucore( f ) and UB( f ). The result is shown in figure 7.
The uppermost curve is Ucore +(EC−µ) which is independent of D∗ and equal to the activation
barrier for D∗ = 0. As mentioned before, Ucore is taken in the ‘on-site’ position.

The other three pairs of curves represent parameter values of the normalized strength D∗
of the deformation potential between 0.5 and 1.5. In each pair the upper and the lower curve
are [UB + (EC − µ)]between sites and [UB + (EC − µ)]on site, respectively.

The following conclusions can be drawn from an inspection of this figure:
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(i) The linearity is not perfect for either plot, but is sufficient to render the thermal activation
analysis a useful tool.

(ii) limT →0[Ucore + (EC − µ)] is close to ED.
(iii) Q = limT →0[UB + (EC −µ)] is significantly reduced with respect to ED for Ge (D∗ = 2),

and even for Si (D∗ = 0.8) the reduction is not negligible.
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